34 COMPUTE

Aprit, 1982, Issue 23

Problems with memory cells in your computer's RAM
(where you do your programming) can sometimes be quite
subtle. It would be clear that you had a bad cell somewhere
if your computer responded to your question, ? FRE(1) by
saying that you had 320 byles free before you'd even put a
program in. But whal about the less obvious memory
problems? A cell might only go strange when the cell next
to it contains a five. Or it might work fine, bul fail afier
a certain amount of time passes. Such subtle failures,
[fortunately relatively rare, can have you looking in vain
for a bug in your program. Mr. Scanlon presents a
sophisticated memory testing frrogram here (in machine
language, for any computer which uses the 6502 chip,
Apple, CBMIPET, Atari, OSI, VIC). This program can

uncover some of those more subtle cell fatlures.

Track Down
Those Memory
Bugs!

Lea J Scarlon
Inverness, FL

If you just went out and bought a new tape recorder,
a pair of jeans, or a quart of milk, you'd find out in
short order just how good or bad the product is. If
the tape recorder makes a Sousa march sound like
a funeral dirge, back to the store it goes. Likewise,
the jeans will show their quality after the first
washing, and your nose knows if the milk is bad!

Unfortunately, faults in a computer memory
board may not be that evident. Certainly, you will
spot obvious defects — a crack in the board, missing
chips, and the like — but if the board is operating at
all, you'll probably need a diagnostic program to
pinpoint any specific problem. This article presents
one such program. It was developed on a Rockwell
AIM 65 microcomputer, but it can run on any
6502-based computer, provided you alter the
output routines. The general principles can, of
course, be applied 1o other types as well.

Besides “dead” chips, which cannot store any
data, memory boards have a variety of other po-
tential problems. For example, some chips contain
one or more bits that will not accept information,
or bits that just hold the information briefly, then
lose it. Other chips will not accept certain bit patterns,
or affect other memory chips in the array. We can’t
hope to write a single program that will identify all
possible errors, but the program given here will
isolate most errors — or at least give you enough
information to delve deeper into the problem.

The Test Algorithm

The diagnostic program in this article uses an
algorithm that was implemented for 68000-based
systems by Robert D. Grappel (“M68000 Diagnostic
Program Tests Memory,” EDN, April 15, 1981, pp.
157-158). This algorithin has two main loops. The
first loop fills the tested portion of memory with
increasing bit patterns; 00000000, is written into
the first byte, 00000001, is written into the second
byte, and so on. With this done, the second loop
checks the memory contents and prints an error
message each time a mismatch is detected.

The test then repeats, each time incrementing
the contents of each byte. Thus, after 256 cycles,
each byte has held all possible values. Note that the
test is destructive; any pre-test information in the
affected RAM will be eradicated.

The program described here also allows you
to check for either hard failures or soft failures. Hard
failures are those that cause the loss of ability 10
change the state of one or more bits, whereas soft
failures allow a change, but revert back to the
original state after a period of time. For soft failure
testing, the time delay between write and readfverify
has been set at one minute, arbttrarily.

Program Flowcharis

With the two tasks now defined, we can look at a
program that will do the job. Before doing so,
however, it will be helpful 1o investigate the overall
structure of the two loops, by looking at their
flowcharts.

Figure 1 shows the sequence of operations for
the write loop, the loop that fills the test portion of
memory with increasing bit patterns. This loop is
preceded by some necessary initialization. First, the
cycle count is set to 255, We actually want 256
cycles, but with a microprocessor that has only
eight-bit registers (and memory locations), it is
convenient to use 255, and plan ending the test
when the cycle count has decremented past zero, to
an all-ones (hex FF) state.

Next, the start pattern — the pattern that will
be written into the first test location — is initialized
to zero. Admittedly, zero is arbitrary. Since we will
cycle through memory 256 times, each location will
eventually receive every possible bit pattern. There-
fore, it really doesn’t matter which value goes into
the first byte.

The microprocessor then calculates the byte
count, by taking the difference between the speci-
fied end address and start address, and adding
one. This is followed by a call to a set-up subroutine,
which sets the “base address” equal to the starting
address, fetches the start pattern and sets a byte
index equal to zero. (The use of the terms base
address and index here show that we plan to use

ARl 1982. 15500 23

COMPUTH

Figure 1: Initialization and Write Sequences

Cycle count
= 255

Start pattern = 0

Byte count = End address -
Start address + 1

@_—.

SETUP
{Initialize base
address, pattern
and index)

Write pattern into
next byte

Byte count = Byte count - 1§

Index = Index + |

Base address = Base address + 256 l—J

one of the 6502’s indexed addressing modes. These
modes calculate an effective address by adding the
contents of an index register — X or Y — 1o an abso-
lute or indirect base address.)

At this point, the microprocessor enters the
actual write loop. It starts by writing a pattern into
memory, decrementing the byte count, then checking
whether test memory has been entirely filled with
test patterns (byte count = 0). When the byte count
is zero, the microprocessor branches to the read/
verify loop, at either its soft error test or hard
error test entry point; path A or path B, respec-
tively. Otherwise, pattern and index are incre-
mented, in preparation for writing to the next byte.

When the index has been incremented past
hex FF, and reaches zero, a new base address is
calculated, by adding 256 to the existing base ad-
dress. Again, this is necessary because our index
registers are only eight bits wide. A nonzero index
causes the microprocessor to loop back to write the
next pattern into memory. This concludes our
discussion of the write loop.

As expected, the sequence of the read/verify
loop (Figure 2) is very similar to that of the write
loop. However, the read/verify loop has two separ-
ate entry points, one for soft error testing (in which
the loop is preceded by a one-minute time delay),
and the other for hard error testing. The read/
verify loop begins with a call to the SETUP subrou-
tine, to fetch the starting test pattern and reinitialize
the base address and index.

With this initialization completed, the byte-by-
byte comparisons begin. This consists of comparing
the contents of each memory location against the
test pattern that was written into it. If a mismatch is
detected, the microprocessor calls an error subrou-
tine, to print out the pertinent information — bad
address, expected pattern and the pauern read.
The rest of the read/verify loop is identical to the
bottom of the write loop, except that when all
locations have been read, the read/verify loop
increments the start pattern and checks for end-of-
test {cycle count less than zero). If further testing is
necessary, the microprocessor branches back to the
beginning of the write loop.

The Diagnostic Program

Now that you understand the criteria of the pro-
gram and its sequences, we can look at the program
itself. Program [shows the initialization and write
sequence, the portion of the program that was
flowcharted in Figure 1. Note that before executing
the program, three parameters must be stored in
zero page:

1. Store the starting address in locations 00 and

01, with the low byte in 00.

2, Store the ending address in locations 02 and

03, with the low byte in 02.

3. Select soft ervor testing or hard error testing

by storing a value of 00 or 01, respectively, in

location 04.

April 1982 Issue 23

COMPUTE| a7

Figure 2: Read/Verify Sequence

Wait one minute
before reading

.|

SETUP
(Initialize base
address, pattern
and index}

ERROR
(Print error
information)

E Byte count = Byte count - | I

‘» No

Yes

Besides these five locations, the program uses
11 other zero page locations, as working storage.
These include three parameters that have already
been discussed — byte count (BCOUNT), starting
address (STARTP) and base address (BADDR) —
and four additional parameters which have vet o
be discussed. Of these four, the working byte count
(WCOUNT) 15 a byte count that gets decremented
during each cycle. In fact, WCOUNTT gets decre-
mented fwice during each cycle - once during a
cycle through the write loop, then (after being
reloaded with the byte connt, BCOUNT) once
again during the subsequent cycle through the
readfverity loop.

The parameter SPA'T is a save location {or the
test pattern. During the read/verily and write
loops, the test pattern is held into the accumulator;
SPAT saves the pattern while the accumulator is
being used for other operations. The last iwo pa-
rameters, PADDR and RO'TLOC, are used to hold
information that gets printed out if an error occurs.
Specitically, PADDR holds the effective address of
the error location and ROTLOC holds the “should
be™ pattern and the “is” pattern (i.c., the expected
pattern and the actual pattern).

Next come equates that reference three sub-
routines in the AIM 65 monitor: NUMA prints the
contents of the accumulator, as two ASCH charac-

L Pattern = Pattern + lj

Index = Index + |

—l Base address = Base address + 256

+

Start pattern =
Start pattern + 1

:

Cycle count =
Cycle count - t

40 COMPUTE!

Al 1982, 1ssue 23

Program 1: Source Code for Initialization and Write

Sequences

HDE ASSEMBLER REV 2.2

LINE# ADDR OBJECT LABEL SOURCE
01-0010 2000 i THIS FROGRAM TESTS MEMORY FOR BOTH HARDN AND
01-0020 2000 5 SOFT ERRORS.
01-0030 2000 # BEFORE EXECUTINGr STORE THE FOLLOWING
01-0040 2000 # PARAMETERS IN MEMORY:
01-0050 2000 i LOCS. 00 AND 01 = STARTING ADDRESS
01-0040 2000 i LOCS. 02 AND 03 = ENDING ADDRESS
01-0070 2000 § LOC, 04 = HARD ERROR (01) OR' S8OFT ERROR (00)
01-00B0 2000 i THE FROGRAM RETURNS TD THE MONITOR WHEN DONE.
01-0100 2000 # USER-SUFPLIED PARAMETERS
01-0120 2000 *=0
01-0130 0000 START X=X+2 i STARTING ADDR
01-0140 0002 END *=k+2 # ENDING ADDR
01-0150 0004 HARD X=X+l i HARD/SOFT ERROR TEST SELECT
01-0170 0005 # EQUATES FOR WORKING STORAGE IN ZERD PASE
01-0190 0005 BCOUNT *=x+2 i BYTE COUNT
01-0200 0007 WCOUNT ®=x+2 7 WORKING BYTE COUNT
01-0210 0009 STARTF X=X+1 3 STARTING PATTERN
01-0220 000A BADDR k=X+2 # BASE ADDRESS
01-0230 000C SPAT X=X+41 # FATTERN IS SAVED HERE
01-0240 000D FADDR X=X42 3 ERROR BYTE ADIDRESS
01-0250 00Q0F ROTLOC *=X+1 i WORKING BYTE FOR FRINT ROUTINE
01-0270 0010 P AIM 45 MONITOR SURROUTIINES
01-0290 0010 NUMA =$EA4é 3 PRINT Ar AS TWO ASCII CHARS.
01-0300 0010 DUTPRI =$F000 i OUTPUT A TO PRINT BUFFER
01-0310 0010 CRLOW =$EA13 # RESET DISFLAY & FRINTER
01-0330 0010 i INITIALIZATION SERUENCE
01-0350 0010 *=¢200
01-0340 0200 A2 FF INIT LOX #255 3 CYCLE COUNT = 255
01-0370 0202 A9 00 LDA #0 i STARTING PATTERN = 0
01-0380 0204 85 09 §TA STARTF
01-03%0 0206 38 SEC i BYTE COUNT = END ADDR, -
01-0400 0207 A5 02 LDA END 7 START ADDR. + 1
01-0410 0209 ES5 00 SBC START
01-0420 OR0B B85 05 5TA BCOUNT
01-0430 0200 A5 03 LA END+¥1
01-0440 020F E5 01 SBC START+H1
01-0450 0211 BS 06 STA BCOUNT+L
01-0460 0213 Eé 05 INE BCOUNT
01-0470 0215 DO 02 ENE ML.OOF
01-0480 0217 E& 06 INC RCOUNT#1
01-0470 0219 20 8C 02 MLOOF JSR SETUF # INITIALIZE COUNT» ADDR» INDEX
01-0510 021C # WRITE SEQUENCE
01-0530 021C 91 OA WRITE STA (BADDR)sY # WRITE FATTERN INTO NEXT BYTE
01-0540 O021E 85 OC 5TA SPAT i AND SAVE FATTERN
01-0550 0220 38 SEC # DECREHMENT BYTE COUNT
01~0560 0221 A5 07 LA WCOUNT

01-0570 0223 E%? 01 SHC #1

01~0580 0235 85 07 STA WCOUNT

01~05%0 0227 A5 08 LDA WCOUNT+1

01-0400 0229 E 00 SEC #0

01-0610 0228 85 08 STA WCOUNTH1

01-0620 022D DO 0OA BNE INGP # BYTE COUNT = 07
01-0630 022F C5 07 CHF WCOUNT
01-0440 0231 DO 06 BNE INCP

01-0450 0233 C% 04 CHMP HARD # YES. GO READ/VERIFY
01-0640 0235 DO 23 ENE RERDH

01-0470 0237 FO OC BEG READS

42

COMPUTE April, 1082, Issue 23

LINE#

01-0680
01-04690
01-0700
01-0710
01-0720
Q1-0730
01-0740

ADDR

0239
023B
023C
023E
023F
0241
0243

OBJECT

AS oC

18
&9
ca
Do
Eé
jal]

01

DR
0B
irg

INCF LDA
cLc
ADC
INY
BNE
INC
EBNE

LABEL SOURCE

SPAT i NO. OGET PATTERN
H AND INCREMENT IT
1
i INCREMENT INDEX
WRITE # INDEX = 0T
BADDR+1 i YES. ADD 254 TO BASE ADDRESS
WRITE ¥ AND GO WRITE TG NEXT BYTE

ters; OUTPRI sends one character to the print

terminated when the byvte count has been decre-

buffer: CRLOW inidalizes the display and printer mented to zero. Atthat time, we interrogate the

to their “start” positions. contents of the user-specified parameter HARD
The rest of Program 1 shows the source code (location $04), and branch to the read/verify se-

for the inidalization sequence and the write loop, quence, at either READS (il HARD contains zero)

The programming is straightforward, sovoushould or READH (if HARD contains a nonzeroe value).

have no problem following it if vou studied the
flowchart in Figure 1. Note that the write loop is

The read/verify sequence, shown in Program
2. also follows irs earlier flowchart (Figure 2), and

Program 2: Source Code for Read/Verify Sequence

LINE#

01-0740
01-0770

01-0790
01-0800
01-0810
01-0820
01-0830
¢1-0840
01-0850
01-0B460
01-0870
01-0880
01-08%0
01-0900
. 01-0910
01-0920
01-0930
01~-0940
01-09%0
01-0960
01-0970
01-0980
01-09%90
01-1000
01-1010
01-1020
01-1030
01-1040
01-1050
01-10460
01-1070
01-1080
01~1090
01-1100
01-1110
01-1120
01-1130
01-1140
01-1150
01-1160
01-1170
01-1180
01-1190
01-1200

ADDR

0243
0245

0245
02446
0247
0247
0249
024B
0241
024E
0250
o251
0253
0254
0256
0258
0259
0254
025A
025D
025F
0261
0263
0246
0247
0269
0246R
024D
026F
0271
0273
0275
0277
0279
0278
0270
027E
0280
0282
0284
0286
0287
0289
028B

DBJECT

ce
AS
EA
FD
Fa

01
Fi

02

LABEL SOURCE

i READ/VERIFY SERUENCE. ENTER HERE FOR SOFT
i ERROR TESTING

READS TXaA
PHA
P WAIT ONE
DELAY1 LDA
n3oo0 LDX
Loy
WAIT DEX
EBNE
DEY
BNE
SEC
SBC
BNE.
FLA

SAVE X (CYCLE COUNT) DN STACK

MINUTE BEFORE REGINNING TO READ
$#200 5 EXECUTION COUNT = 200

#3A5 LBAD X AND Y FOR A 300 HMS. DELAY
#$EA
WAIT 7 LOOFP UNTIL X = ©
WAIT # LODOP UNTIL Y = 0
DECREMENT TIMING BYTE
#1
D300 # LOOF UNTIL A = O

RESTORE CYCLE COUNT

TAX 7
i ENTER HERE FOR HARD ERROR TESTING

READH JSR
COMF CHP
5TA
BEQ
JER
DECEC SEC
LDA
SEBC
STA
LDA
SBC
STA
BNE
CHP
BER
INCP1 LDA
ADC
INY
HNE
INC
HNE
DECEC INC
DEX
CPX
BNE
BRK

SETUFR # REINITIALIZE FARAMETERS
(BADDR) » Y # BYTE = TEST PATTERNT
SPAT
DECBC
ERROR 5 NO. PRINT ERRDR MESSABE
§ YES. DECREMENT BYTE COUNT
WCOUNT
#1
WCOUNY
WCOUNT+1
#0
WCOUNT#1
INCF1 # BYTE COUNT = 07
WCOUNT
DECCC
SPAT 5 NO. GET PATTERN
#1 4 ANI: INCREMENT IT
INCREMENT INDEX, TOO
COMP # INDEX = 07
BADDR+1 i YES. ADD 256 TO BASE ADDRESS
COMF i AND GD COMFARE NEXT BYTE
STARTP # INCREMENT STARTY FATTERN
i DECREMENT CYCLE COUNT
#s$FF i COUNT CYCLE NEGATIVE?
MLOOP
YES. RETURN T(X MONITOR

44 COMPUTEI

Apri, 1982, Issue 23

needs no addinonal descripuon. However, vou
may be interested in the one-minute ume delay
routine that gets executed il you are testing for soft
errors. This routine, DELAY 1, generates the one-
minute defay by executing a 300-millisecond delay
routine (D300) 200 umes! Readers who are inter-
ested in the details of this and other delay routines
are relerved 1o my book 63562 Software Design
(Howard W. Sams & Co., TU80), Because the D300
uses the X Register — which holds our program’s
cvele count — the contents of that register must be
saved on the stack while the time delay is being
generated.

The final program, Program 2, shows the
source code for the set-up subroutine (SETUP),
tollowed by the error printout subroutine (ER-
ROR). As was mentioned previously. if the read/
verily sequence reads a pattern that does not match
the expected patern, the ervor subroutine prints

out three items of information: the address of the
oftfending location, the expected patern (the “S/B™
pattern) and the pawern thatis actually read (the
SIS pattern). As an aid o identifying Faulty bits
within a memory location, the 8/B and IS patterns
are printed in a binary representation. To do this,
ERROR calls a second subroutine (BINARY) that
left-ranates the contents of a warking zero-page
location, ROTLOC, cight times. Alter each rotate
operation, BINARY outputs an ASCH 1 or ASCH
0 1o the printer.

Figure 3 shows the kind of listing that the
ERROR subroutine praduces. To generate this
listing on my AIM 65, | selected three locations
within the monitor ROM - LOCATIONS $E000,
SEOOL, and SEO02 — knowing that a reacdi/verify test
on ROM will always fail. As you can see, the printout
has been retyped for publication, because the AIM
65 printer output does not reproduce very well.

Program 3: Source Code for Set-Up and Error

PAGE 0004

THIS SUBROUTINE TRANSFERS THE BYTE COUNT TO

SETS BASE ADDR =
FATTERNy AND SETS INDEX = 0

i INITIALIZE WORKING BYTE COUNT
TD BEGIN.,

BASE ADDR = START ADDR

INITIALIZE PATTERN
INDEX = O

SAVE Y ON STACK
CALCULATE FRINT ADDRESS

RESET DISFLAY AND FRINTER
FRINT LOC LINE

Subroutines

LINES ADDR OBJECT LABEL SDURCE
01-1230 028C
01-1250 028C P
01-1260 ©28C 3 THE WORKING RYTE COUNT.
01-1270 028C i START ABDRs FETCHES THE
01-1290 ©028C A5 05 SETUF LIA ECOUNT
01-1300 028 85 07 STA WCOUNT
01-1310 0290 AS 06 LA BCOUNTH1
01-1320 0292 85 08 STA WCOUNT+1
01-1330 294 AS 00 LDA START
01-1340 0296 85 04 S5TA BADDR
01-13250 0298 AS 01 LA START+1
01-1360 029A B85 OB STA BADDR+1
01-1370 029C AL 0% LDA STARTP ¥
01-1380 O2%E A0 CO LDY %0]
01-13%90 O2A0 &0 RTS
01-1410 O02A1 3 PRINT ERROR INFORMATION
01-1420 0241 7 HAD ANDRESS (HEX)
01-1430 ©02A1 i &/F FATTERN (EINARY)
01-1440 02A1 3 IS FATTERN (BINARY)
01-14460 02A1 98 ERROR TYA ¥
01-1470 OZA2 48 FHA
01-1480 02A3 18 CLC [
01-1490 02A4 &5 0A ADC BADDR
01-1500 02Aé 85 0D STA PADDR
01-1510 O2AB A% 00 LDA #0
01-1520 O2AA 65 OB ADC BADDR+1
01-1530 O2AC BS OF 5TA PADDR+1
01-1540 02aE 20 13 EA JSK CRLOW H
01-1550 OZ2E1 A0 Q0 LDY %0 H
01-1560 02B3 BY OB 03 LooPi LDA LINE1sY
01-1570 02R& 20 00 FO JSR OUTPRI
©1-1580 O02E? CB INY
01-1590 02BA CO 07 CPY &7
01-1600 02BC DO FS5 BNE LOOF1
01-14610 O02BE A5 QE LDA FADDR+1
01-14620 O©02C0 20 46 EA JBR NUMA
01-1630 0203 AS OD LA FADRDIR

46 COMPUTE!

April, 1982 1s5ue 23

LINES ADDR DBJECT LABEL SOURCE

01-1640 Q205 20 44 EA JER NUMA

Q1-1650 0R2CB 20 3 EA JSR CRLOW

01-16460 ORCB BY OB 03 LOGP2 LDA LINE1l.Y i FRINT 8/B LINE
G1-14670 O2AME 20 00 FO JBR DUTFRI

01~-14680 021 cC& INY

01-1490 0202 CO OF CPY #15

01-1700 0204 [0 FS HNE LDOF2

01-1710 02Dé A5 OC LA SPAT

01-1720 0208 20 Fs 02 JSR BINARY

01-1730 02D 20 13 EA JSR CRLOW

01-1740 O2DE A0 OF LY #LINE3-LINEL

01-1750 OIE0 B9 OR 03 LODP3 LIA LINE1»Y # FRINT IS LINE
01-1760 Q2E3 20 00 FO JER DUTPRI

01-1770 O02E& CB. INY

01-1780 OR2E7 CO 17 CPY #23

01-179C O2E? DO FS BNE LOOP3

01-1800 O02EB 6B PLA

01-1810 O2EC 48 FHA

01-1820 O2ED A8 TAY

01-1830 O2EE Bl 0A LDA (BADDR)»Y

01-1840 O2F0 20 Fé 02 JSR BINARY

01-1850 O02F3 &8 FLA

01-1860 O02F4 AB TAY

01-1870 O02F5 40 RTS

01-1890 O2F6 # FRINT PATTERN IN BINARY FORMAT
01-1910 02Fé6 AO 08 BINARY LDY #8

01-1920 02F8 83 OF STA ROTLOC

01-1930 O02FA 26 OF ROTATE ROL ROTLOC 3 IS BIT A 1 OR A OF
01-1940 O02FC 90 04 BCC SBZERD

01-1950 O02FE A9 31 LDA #7117 7 IT'S A 1
01-194640 0300 DO 02 ENE PBIT

01-197¢ 0302 A% 30 SBZERO LDA #°0° i IT‘S A O
01-1980 0304 20 00 FO FRIT JSR OUTPRI

01-1990 0307 88 DEY

01-2000 0308 DO FO BNE ROTATE

01-2010 0304 &0 RYS

01-2030 0O3ICB # MESSAGES FOR ERROR SUBROUTINE
01-2050 030B 20 20 LINEL .BYT ‘ LDC.=“

01-20460 0312 20 20 LINE2 .BYT * S/B=’

Q1-2070 031a 20 20 LINE3 .BYT * IS="

01-2080 0322 +END

ERRDRS = 0000 END OF ASEZIMBLY = 0321

Execution Times For The Test Program

Having seen the source code listings, vou now
know that the test program occupies slightly more
than a page of memory: 1o be exact, it occupies 290
bytes. However, you're probably more curious
about how long the progran tkes 1o execute —
which translates to how long vou will have o stand
around before vou know whether or not the me-
mory is “bug-free.”

In testing for hard errors, the program takes
about 25 seconds 1o test 1024 (or 1K) bytes, if your
computer has a 1-MHz clock. This means that it
will take six minutes and 45 seconds to test a [6K-

bvte board.

In testing for sofl errors, the program introduces
a one-minute time delay between each write and
read/verify sequence. And since the program exe-
cutes 256 cycles, soft error testing will always take
two hours and 16 minutes more than hard error
testing, regardfess of how much memory is being
tested! Therefore, it will take roughly two hours,
22 minutes and 45 seconds to test a 16K board for
soft errors. Clearly, iU's best to check for hard errors
first, then re-check for soft errors if you're still
having problems.

Figure 3: Sample Error Printout

LOC.=E000
S/B = 00000000
1S=01000110
LOC.=E001
S/B = 00000001
IS=01010610
LOC.=E002
S/B = 00000010
1S=01001111
LOC.=E000
S$/B = 00000001
1S=01000110
LOC.=E001
S/B =00000010
1S=01010010
LOC.=E002
S/B = 00000011
1§=01001111
LOC.=E000
S$/B = 00000010
1S=01000110
LOC.=E001
S/B=00000011
18=01010010
LOC.=E002
S5/B=00000100
IS=01001111
" (253 more sets of listings follow.)

